
Theoretical vs. Actual Sort Performance

Joshua Burkett
CoSc 320, Data Structures
Pepperdine University

November 20, 2021

Abstract

Insertion, Selection, Heap, Merge, and Quick are widely know sort methods.
They serve as perfect candidates to put theory to the test to see if the real­world data
supports the theory. To accomplish this, performance data on each sort is gathered.
Using Clion, RStudio, and Dr. J. Stanley Warford’s dp4dsDistribution makes it
possible to analyze that data. This data analysis concludes that the best sort out of
the five is the merge sort.

1 Introduction

Sorting algorithms are fundamental to computer science; but choosing the most effec­
tive sort for the job is less fundamentally obvious. The purpose of this paper is to delve
into answering that very question. This project analyzes the performance of five com­
mon sorting algorithms, the insertion sort, selection sort, heap sort, merge sort, and
quick sort. As such, the raw performance data of each sort is gathered as a function of
the number of values being sorted. Next, a least squares curve fit is done with the data
based on an n2 and an n lgnmodel. This data also serves to confirmwhether the theories
are correct and agree with the analysis. In other words, it will confirm or deny whether
the theoreticalΘ increase in execution time as a function of the number of values sorted
is correct for these five sorts. Lastly all of this data helps to draw conclusions about
which sort is best and any intricacies involved in that answer.

This paper is broken up into four sections, the remaining three are as follows: Sec­
tion 2 describes the method of data collection used along and compares the character­
istics of the sort algorithms. Section 3 describes the analysis and data for each sort.
Section 4 wraps up with concluding thoughts.

1



2 Method

Computer Science theory is fantastic, and presents us with many ways to solve recur­
rence problems. There are methods such as backwards substitution, the recursion­tree
method, guess and verify, and the master method. All of these methods can give us a
theoretical Θ increase in execution time for each sort. However, theory is useless if it
fails to agree with real­world data.

2.1 Sort algorithms

A characterization of the sort algorithms, as well as a general taxonomy are detailed
below. The sort visualizations are from Design Patterns for Data Structures. [2] The
explanations were created from information from GeeksforGeeks and Design Patterns
for Data Structures. [1][2]

Split

Sort Sort

Join

Figure 1: The general Merritt sort taxonomy algorithm. [2]

Although different, all five of the sorts share an overarching characteristic; they all
split, sort, then join. The general Merritt sort taxonomy algorithm, displayed in Figure
1, helps to visualize how these sorts work. The various bubbles represent arrays with
data stored in them.

2



Figure 2: The insertion sort algorithm. [2]

The insertion sort works by splitting off the last value from the array, then sorting
the half displayed on the left side of Figure 2. That sort step works by creating a sorted
and unsorted section of the array. The first value in the unsorted section is compared to
the value of the item in the sorted section. Based on if its greater or lesser, that value
will get moved into the proper order inside the sorted section. This is repeated until the
entire array is sorted. In the join step, one last loop cycles through to find where that
originally split­off value belongs. Theoretically, it has a time complexity of Θ (n2).

Figure 3: The selection sort algorithm. [2]

The selection sort works by splitting off the largest value from the array, then sorting
the half displayed on the left side of Figure 3. That sort step works by creating a sorted
and unsorted section of the array, similar to the insertion sort. Dissimilar, however, is
that the first value in the unsorted section is compared to the other values in the unsorted
section until a lowest value is found. Based on if its greater or lesser, that value will get
moved front of the array. This is repeated with each new lowest being placed behind

3



the lowest from the last loop. This is done until the entire array is sorted. In the join
step, one last loop cycles through to find where that originally split­off value belongs.
Theoretically, it has a time complexity of Θ (n2).

Figure 4: The heap sort algorithm. [2]

The heap sort in Figure 4 is unique compared to the others in the fact that it cannot
accept just any ordinary array. The array must be pre­sorted into a binary tree that
satisfies both the max heap order, and the max heap shape. The largest value is split
off, and the last value of the array is put in its place at the root. Because its a smaller
value, it will be in the wrong place, and will need to be sifted down to re­satisfy the
max heap shape. The process is repeated until the array is sorted. Theoretically, it has
a time complexity of Θ (n lgn).

Figure 5: The merge sort algorithm. [2]

4



The merge sort in Figure 5 is relatively simple. It begins by splitting the array into
two halves. The two individual halves are each recursively sorted, then joined together.
This join step simply compares each value from left to right of each list; whichever
value is lower is placed into the sorted array. Theoretically, it has a time complexity of
Θ (n lgn).

Figure 6: The quick sort algorithm. [2]

The quick sort in Figure 6 has similarities to the merge sort, but the initial split
is done based on a rough calculation of the median of the array. Anything above that
median value will get placed to the right, and everything below that value will get placed
to the left. These new lists are recursively sorted, then easily joined with no additional
calculation required. Theoretically, it has a time complexity ofΘ (n lgn) orΘ (n2) based
on if its a average case or worst case respectively.

2.2 Data collection

The method needed to gather this data is more complicated than it may at first seem.
This project requires gathering the counts of comparisons and assignments that the code
of each sort makes during run time. Since manually counting these would be ridiculous,
Dr. J. Stanley Warford created a solution for this very problem in his project called
dp4dsDistribution.

This project was made possible by the C++ integrated development environment,
Clion, developed by JetBrains Inc., and the dp4dsDistribution project. The dp4dsDistribution
was created to include SortCompAsgn.cpp, which uses the sort algorithmns created by
the user and outputs the raw count data of the comparisons and assignments made when
runningwith the test files. These test files are .txt files filled with random integers. Each
test file includes 500 more numbers than the last, which provides a range of quantities

5



to test by selecting each different test file.

2.3 Analysis

Residual standard error (RSE) is crucially important for determining whether the data
gathered represents a n lgn or n2 model. A lower RSE means our raw data more closely
matches the current model being tested (n lgn or n2). This will allow us to label the
sorts, but also to determine which is statistically best.

The following is the formula to calculate the RSE:

RSE =

√
∑(yi − ŷi)2

d. f .

This formula takes the sum over all the data points. yi is the y value of an individual
data point, ŷi is the y value of the point on the curve whose x value is the same as the x

value of yi, and d. f . is the degrees of freedom.
RSE is extremely useful, but not without a model to compare against for our n lgn

and n2 theoretical execution time increases. Here is the quadratic curve fit equation.

y = An2 +Bn+C

Here is the n lgn curve fit equation.

y = An lgn+Bn+C

These forumla’s are used inside the R integrated development environment called RStu­
dio.

6



3 Results

This section presents the raw data and analysis.

3.1 Raw data

Number of Algorithm
data points Insert Select Heap Merge Quick

500 63597 125249 7000 4344 6275
1000 254362 500499 15967 9700 13618
1500 554589 1125749 25813 15467 22049
2000 1003667 2000999 35962 21400 30942
2500 1606133 3126249 46662 27595 39413
3000 2272433 4501499 57608 33950 46249
3500 3083553 6126749 68686 40320 59176
4000 3997696 8001999 79945 46820 64164
4500 5066599 10127249 91547 53511 75776
5000 6349081 12502499 103334 60253 85019
5500 7670586 15127749 115147 66972 94234
6000 9080159 18002999 127042 73910 101023

Figure 7: Number of comparisons.

Number of Algorithm
data points Insert Select Heap Merge Quick

500 63604 1497 5667 8976 9829
1000 254367 2997 12335 19952 20130
1500 554593 4497 19415 31904 35252
2000 1003673 5997 26684 43904 49612
2500 1606137 7497 34207 56808 61185
3000 2272438 8997 41845 69808 74336
3500 3083561 10497 49556 82808 78058
4000 3997707 11997 57388 95808 99816
4500 5066605 13497 65354 109616 107027
5000 6349094 14997 73410 123616 126268
5500 7670593 16497 81442 137616 134445
6000 9080166 17997 89631 151616 156893

Figure 8: Number of assignments.

7



0

2500000

5000000

7500000

2000 4000 6000
Number sorted

N
um

be
r 

of
 a

ss
ig

nm
en

ts

Algorithm

Insert sort

Selection sort

Heap sort

Merge sort

Quick sort

(a) Plot of number of assignments.

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2000 4000 6000
Number sorted

N
um

be
r 

of
 c

om
pa

ris
on

s

Algorithm

Insert sort

Selection sort

Heap sort

Merge sort

Quick sort

(b) Plot of number of comparisons.

Figure 9: Sort algorithm assignments and comparisons.

3.2 Insertion sort

0

2500000

5000000

7500000

2000 4000 6000
Number sorted

In
st

er
t s

or
t: 

N
um

be
r 

of
 a

ss
ig

nm
en

ts

(a) Plot of number of assignments.

0

2500000

5000000

7500000

2000 4000 6000
Number sorted

In
se

rt
 s

or
t: 

N
um

be
r 

of
 c

om
pa

ris
on

s

(b) Plot of number of comparisons.

Figure 10: Insert sort algorithm assignments and comparisons.

Figure 10 displays the number of assignments (a), and number of comparisons (b)
for the insertion sort data. Starting with number of assignments, the n2 curve fit yields
an RSE of 28130 on 9 degrees of freedom. This is compared to the n lgn curve fit
RSE of 155300 on 9 degrees of freedom. Assessing the number of comparisons, the
n2 curve fit yields an RSE of 28130 on 9 degrees of freedom and a n lgn curve fit RSE
of 155300 on 9 degrees of freedom. For both assignments and comparisons, the RSE

8



of the n2 curve fit is lowest. This confirms the theory that the asymptotic bounds are
Θ (n2).

3.3 Selection sort

5000

10000

15000

2000 4000 6000
Number sorted

S
el

ec
tio

n 
so

rt
: N

um
be

r 
of

 a
ss

ig
nm

en
ts

(a) Plot of number of assignments.

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2000 4000 6000
Number sorted

S
el

ec
tio

n 
so

rt
: N

um
be

r 
of

 c
om

pa
ris

on
s

(b) Plot of number of comparisons.

Figure 11: Selection sort algorithm assignments and comparisons.

Figure 11 displays the number of assignments (a), and number of comparisons (b)
for the selection sort data. Starting with number of assignments, the n2 curve fit yields
an RSE of 3.832e­12 on 9 degrees of freedom. This is compared to the n lgn curve fit
RSE of 2.256e­12 on 9 degrees of freedom. Assessing the number of comparisons, the
n2 curve fit yields an RSE of 4.585e­09 on 9 degrees of freedom and a n lgn curve fit
RSE of 291500 on 9 degrees of freedom. There is actually no single answer for this
sort. Seeing as a sort involves both the assignments and the comparisons, this confirms
the Θ (n2) asymptotic bounds posed by the theory.

9



3.4 Heap sort

25000

50000

75000

2000 4000 6000
Number sorted

H
ea

p 
so

rt
: N

um
be

r 
of

 a
ss

ig
nm

en
ts

(a) Plot of number of assignments.

25000

50000

75000

100000

125000

2000 4000 6000
Number sorted

H
ea

p 
so

rt
: N

um
be

r 
of

 c
om

pa
ris

on
s

(b) Plot of number of comparisons.

Figure 12: Heap sort algorithm assignments and comparisons.

Figure 12 displays the number of assignments (a), and number of comparisons (b)
for the heap sort data. Starting with number of assignments, the n2 curve fit yields an
RSE of 155.4 on 9 degrees of freedom. This is compared to the n lgn curve fit RSE of
22.41 on 9 degrees of freedom. Assessing the number of comparisons, the n2 curve fit
yields an RSE of 312.9 on 9 degrees of freedom and a n lgn curve fit RSE of 56.79 on 9
degrees of freedom. For both assignments and comparisons, the RSE of the n lgn curve
fit is lowest. This confirms the theory that the asymptotic bounds are Θ (n lgn).

10



3.5 Merge sort

40000

80000

120000

2000 4000 6000
Number sorted

M
er

ge
 S

or
t: 

N
um

be
r 

of
 A

ss
ig

nm
en

ts

(a) Plot of number of assignments.

20000

40000

60000

2000 4000 6000
Number sorted

M
er

ge
 s

or
t: 

N
um

be
r 

of
 c

om
pa

ris
on

s

(b) Plot of number of comparisons.

Figure 13: Selection sort algorithm assignments and comparisons.

Figure 13 displays the number of assignments (a), and number of comparisons (b)
for the merge sort data. Starting with number of assignments, the n2 curve fit yields an
RSE of 291.8 on 9 degrees of freedom. This is compared to the n lgn curve fit RSE of
190.1 on 9 degrees of freedom. Assessing the number of comparisons, the n2 curve fit
yields an RSE of 147.8 on 9 degrees of freedom and a n lgn curve fit RSE of 36.19 on 9
degrees of freedom. For both assignments and comparisons, the RSE of the n lgn curve
fit is lowest. This confirms the theory that the asymptotic bounds are Θ (n lgn).

11



3.6 Quick sort

40000

80000

120000

160000

2000 4000 6000
Number sorted

Q
ui

ck
 s

or
t: 

N
um

be
r 

of
 a

ss
ig

nm
en

ts

(a) Plot of number of assignments.

25000

50000

75000

100000

2000 4000 6000
Number sorted

Q
ui

ck
 s

or
t: 

N
um

be
r 

of
 c

om
pa

ris
on

s

(b) Plot of number of comparisons.

Figure 14: Selection sort algorithm assignments and comparisons.

Figure 14 displays the number of assignments (a), and number of comparisons (b)
for the quick sort data. Starting with number of assignments, the n2 curve fit yields an
RSE of 3776 on 9 degrees of freedom. This is compared to the n lgn curve fit RSE of
3900 on 9 degrees of freedom. Assessing the number of comparisons, the n2 curve fit
yields an RSE of 1382 on 9 degrees of freedom and a n lgn curve fit RSE of 1346 on 9
degrees of freedom. For both assignments and comparisons, the RSE between the n lgn

and n2 curve fits were very close. Technically though, the assignments curve fit best to
n2, while the comparisons curve fit best to n lgn. This lines up perfectly with the theory
being Θ (n2) for the worst case, and Θ (n lgn) for an average case.

3.7 Sort comparisons

The merge sort is by far the best of the five sorts analyzed.While the quick sort is a very
close contender, under most tests, it had equivalent or less assignments/comparisons.
The fact that it scales is really important too, making it great for applications that may
need large quantities sorted. An insert or selection sort might be fine with small amounts
of data, but as soon as the sorts need to handle large quantities, those two crumble under
their inefficiencies. The overall dominance of the merge sort is visualized as the lowest
(and therefore most efficient) pink line on Figure 9 (a) and (b).

12



4 Conclusions

This project has checked all the intended boxes, and most importantly, proved that the
theoretical asymptotic bounds are correct when compared to real world data. This ex­
periment discovered that the merge sort is the best of the five sorts tested. That said,
using a quick sort or heap sort still has far better performance than the selection and
insertion sorts. So, the most important finding is this: for any project where large data
arrays currently do, or may need to be sorted, insertion and selection sorts should be
avoided at all costs.

References

[1] Sorting algorithms. https://www.geeksforgeeks.org/sorting­algorithms, 2008. On­
line; accessed 20­November­2021.

[2] Dung X. Nguyen and J. Stanley Warford. Design Patterns for Data Structures.
Pepperdine, prepublication manuscript edition, 2021.

13


